Prediction Algorithm for State Prediction Model
نویسندگان
چکیده
Dynamic Bayesian network is the extension of Bayesian network in solving time series problems .It can be well dealt with the time-varying multivariable problem. A state model is given based on Dynamic Bayesian network. The model can more accurately describe the relationship between the system state and the influencing factors. Single-step and multi-step prediction algorithms are given to predict the system state. The multi-step state prediction algorithm is achieved by extending time-slice. In this paper, the width of the reasoning is used to simplify the amount of data in the reasoning process. Index Terms – dynamic Bayesian networks, state prediction model, single-step prediction algorithm, multi-step prediction algorithm
منابع مشابه
PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملDiabetes Prediction by Optimizing the Nearest Neighbor Algorithm Using Genetic Algorithm
Introduction: Diabetes or diabetes mellitus is a metabolic disorder in body when the body does not produce insulin, and produced insulin cannot function normally. The presence of various signs and symptoms of this disease makes it difficult for doctors to diagnose. Data mining allows analysis of patients’ clinical data for medical decision making. The aim of this study was to provide a model fo...
متن کاملReal-time Prediction and Synchronization of Business Process Instances using Data and Control Perspective
Nowadays, in a competitive and dynamic environment of businesses, organizations need to moni-tor, analyze and improve business processes with the use of Business Process Management Systems(BPMSs). Management, prediction and time control of events in BPMS is one of the major chal-lenges of this area of research that has attracted lots of researchers. In this paper, we present a...
متن کاملPrediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms
Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 7 شماره
صفحات -
تاریخ انتشار 2012